Quantitative measurement of color vision is an important diagnostic test used to define the degree of hereditary color vision defects found in screening with pseudoisochromatic tests and in evaluating deficient color vision from acquired disorders.

The Panel 16 Quantitative Color Vision Test is unique from other quantitative color vision tests because it uses large cap sizes, which gives more information about color vision function both in normally sighted and low vision individuals.

The Panel 16 Color Vision Test consists of a set of a “pilot” of “pilots” and 15 test caps of the same hues as in the Farnsworth Panel D-15 Test. The diameter of the stimulus area is 3.3 cm (1.3 in).

The stimulus size can be reduced by using a dark gray restriction ring with an opening of 1.2 cm (.47 in) in diameter.

The large stimulus area corresponds to the visual angle of 3.8° when testing at 50 cm (20 in) and to 6.3° when testing at 30 cm (12 in). The small stimulus is used as the recommended 1.5° stimulus at a distance of 46 cm (18 in). When testing young children or persons with low vision, the distance is often much shorter than 50 cm, thus the size of the large stimulus becomes 9.5° at 20 cm (8 in) and 19° at 10 cm (4 in).

The color surface has a protective coating, which decreases the risk of the stimulus area getting smudged.

Color Vision

Neural Functions in Color Vision

Perception of color is based on three different neural functions:

1. Absorption of light energy in three types of cone cells of the retina;
2. Comparison of the absorption rates in these three different cones; and
3. Abstraction of color by cerebral cortex from this comparison.

Absorption curves of the three cone populations (Figure 1) show that each cell absorbs light energy within a wide range of the color spectrum. Neural impulses coming from all three types of cones selectively activate the cells of the ganglion cell layer from where the impulses are transferred via optic nerves and optic radiations to the primary visual cortex, from there the information moves to color specific areas for further analysis.

The three types of cone cells are the L- (long wave-length sensitive or “red”) cones, the M- (middle wave-length sensitive or “green”) cones, and the S- (short wave-length sensitive or “blue”) cones. The L- and M-cones constitute the majority of cones, 85 to 90 percent. The distribution of cones varies in different locations of the retina: S-cones...
are not present in the very center of the fovea and are concentrated on a circular area, approximately 2° from the center of the fovea. Differences in cone distribution is probably not important because the integration and combination of different cone types (i.e., L versus M, and separately, L and M versus S) is probably made on a similar basis in each unit area of color space. The absence of S-cones in the foveola is probably compensated for within the unit area of color space that includes the foveola.

Results of color vision tests vary as a function of the size of the color stimulus because of the uneven distribution of the cones. In the peripheral retina, we all have “defective” color perception of small test stimuli. In everyday life, we are not aware of variations in color perception in the different parts of the visual field, because of the complicated summation functions of the brain.

Clinical Evaluation of Color Vision

When a person’s color perception is deviant from that of the general population, the disorder may be either a congenital or an acquired color vision defect.

Congenital Color Vision Defects

Color vision testing is designed for assessing children and adults who have congenital color vision deficiencies. Often, the deviations from normal color vision are so mild that they do not have any practical consequences, especially in childhood if the child’s difficulty is understood by the teacher and parents. Adults with color vision defects might not have a color vision defect may fail color vision screening tests. Using quantitative tests. Statements or diagnosis of color deficiency is usually placed at ten (10) crossings. Different employers have different limits for confusions tolerated for specific tasks.

Red-green color vision defects are X-chromosomally inherited, thus more common in males (8%) than in females (0.4%). When testing young children, we do not get the number of “crossings” across the colour circle, as stated above, because the child is not making complete colour choices in one trial. However, we do get important information about whether or not the child confuses some colours (Figure 19).

Using the Recording Form

Draw the line connecting the numbers in the order which the person has arranged the caps (Figure 4). The four diagrams on the Recording Form are used to record test results for: the training trial, binocular test, right eye and left eye. If only the binocular test is done, or the person has only one eye, the results can be recorded simply by writing down the numbers of the caps in the order that they are arranged.

If the tester wants to mark the errors, the errors can be circled. For example Figure 5 would look like this:

P 1 15 15 2 3 14 13 12 11 10 9 8 7 6 5 4

This is also the easiest way to record results in a case history. If the test is done twice, as it often is, the results can be written under each other to make it easier to see any variations. For example Figure 5 would look like this:

P 1 15 15 2 3 14 13 12 11 10 9 8 7 6 5 4
P 1 15 15 3 14 12 11 10 9 8 7 6 5 4

(Retest on the person in Figure 5)

In this case, there is only a mild uncertainty in the arrangement of the colours, no stable axis and less than four crossings.

When recording the results as matched pairs, write them down as in Figure 11. The crossings can be marked on the diagram on the Recording Form as in Figure 12.
By not arranging the whole circle at once in this play situation, colour confusions are found as short sequences of the circle. By varying the thirds of the caps on the table, the axis confusions can be easily found. When tested with the large stimulus, the degree of the defect may be different from the results of testing with a small stimulus.3

Testing can also be made easier by using the following technique: Show the person that ‘I would arrange these colours in this order’ and place the caps one after the other in the correct order. Then say “this was my way of arranging, let’s sort the caps together’. Place the Pilot cap at the left edge of the test area and say ‘this is always the first cap’. Then take it and move it above the other caps that are mixed on the table and ask ‘which of these caps has nearly the same colour?’. When the child chooses one – correct or incorrect – place the Pilot on its place and use the chosen cap the same way as the Pilot cap to find the next cap. Go on like this until all caps are sorted. If one or two caps are left over, tell the child ‘these we forgot to sort, where would you place them?’. When the child/person does not need to concentrate on the motor functions, sorting the colours becomes easier.

Acquired colour vision defect tested with different sorting tests

Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing the color circle on Lanthony’s Desaturated Test (weak pastels of colour mixed with white) or the size of the test is varied. Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.
Children and some adults with colour vision deficiencies are more difficult to test because the abnormal arrangement could be due to misunderstanding how to do the task. When a normally sighted child has problems in naming colours and repeatedly shows "confusion areas" on the same axis (deutan or protan), the diagnosis of inherited colour vision defect can be made, even in children as young as five to six years of age. If the child seems to be hesitant in arranging the caps, the technique described for testing young children can be used at any age, including adults.

Colour vision deficiencies should be known at school as early as possible so that the child is not misunderstood. In the early teens colour vision tests are needed for advice in career planning. (Figures 7 and 8). Figure 7 shows three crossings across the colour circle. The person sorted the caps to the following order: "pilot", 1-15-2-3-14, then the next correctly. The confusions are between the blue end and the purple end of the colour circle.

Figure 8 shows severe deutan defect is noticeable in this recording. The order of caps is: "pilot", 1-15-2-14-3-13-4-5-12-11-6-10-7-8-9.

Young Children
Children who do not understand the task of hue arrangement can be tested in a play situation.

1. Every third cap of the set (Figure 9) is placed on the table (Caps "pilot", 3, 6, 9, 12, and 15 from Set A). The child is given the same numbered caps from the matching second set, Set B, one at a time and asked to find the cap that matches the cap in his/her hand from Set A on the table. Usually there is an obvious difference in the behaviour of a child with normal colour vision and one with a colour vision defect. The former finds the matching colour with no delay, the latter keeps choosing between different colours. The caps should preferably not be in the order of a normal circle but randomly placed on the table.

Caps are randomly arranged in front of the child (Figure 9). Caps are: 3, 6, 9, 12, and 15 and the "pilot." The child's task is to match colours by moving caps of the other set, one by one, here it is #9.

The confusions are revealed as in the previous situation.

2. When the child is accustomed to playing with colours, the number of caps on the table increased to cover two-thirds of the total caps (Pilot, 1, 3, 4, 6, 7, 9, 10, 12, 13, and 15). The game can be played as before (i.e., the child tries to match the colours). The confusions are revealed as in the previous situation.

3. Make the test situation more difficult by using only one set of caps. Place one-third of the caps aside (2, 5, 8, 11, and 14). Give the child one of the remaining two-thirds of the caps in random order, in front of the child (Figure 12). The child has matched #2 with #3 and #15; #5 with #6 and #12; #8 with #7 and #9; #11 with #9 and #12; and #14 with #3 and #13 (Figure 13). The findings are recorded on the recording sheet (Figure 14).
may decrease the degree of the defect or make it disappear. Illumination should be either natural, overcast daylight at a window facing the northern sky (in Northern Hemisphere) or artificial light with color temperature of 6774 K (Standard Illuminant C).

Testing Procedures

Older Children and Adults

Adult testing techniques are used when children or adults are asked to choose a cap that is closest in color to the previously chosen cap. This is surprisingly easy for children. Generally, even five-year-old children with normal color vision are able to arrange the whole test quickly and with no hesitation (Figure 6). A child or an adult person may train the test situation with the color vision game. During the games the color confusion areas will be noticed. The degree of deficiency must be then investigated using the Panel 16 test.

Children and some adults with color vision deficiencies are more difficult to test because the abnormal arrangement could be due to misunderstanding how to do the task. When a normally sighted child has problems in naming colours and repeatedly shows “confusion areas” in the same axis, (deutan or protan), the diagnosis of inherited colour vision defect can be made, even in children as young as five to six years of age. If the child seems to be hesitant in arranging the caps, the technique described for testing young children can be used at any age, including adults.

Color vision deficiencies should be known at school as early as possible so that the child is not misunderstood. In the early teens colour vision tests are needed for advice in career planning (Figures 7 and 8).

Figure 7 shows three crossings across the colour circle. The person sorted the caps to the following order: “pilot,” 1-15-2-14-3-13-4-5-12-11-6-10-7-8-9. The confusions are revealed as in the blue end and the purple end of the colour circle.

Figure 8 shows severe deutan defect is noticeable in this recording. The order of caps is: “pilot,” 1-15-2-3-14, then the rest correctly. The confusions are between the blue end and the purple end of the colour circle.

Young Children

Children who do not understand the task of hue arrangement can be tested in a play situation.

1. Every third cap of the test (Figure 9) is placed on the table (Caps “pilot,” 3, 6, 9, 12, and 15 from Set A). The child is given the same numbered caps from the matching second set, Set B, one at a time and asked to find the cap that matches the cap in his/her hand from Set A on the table. Usually there is an obvious difference in the behaviour of a child with normal colour vision and one with a colour vision defect. The former finds the matching colour with no delay, the latter keeps choosing between different colours. The child should preferably not be in the order of a normal circle but randomly placed on the table.

Caps are randomly arranged in front of the child (Figure 9). Caps are: 3, 6, 9, 12, and 15 and the “pilot.” The child’s task is to match colours by moving caps of the other set, one by one, here it is #9.

Figure 6 shows normal findings. The person has sorted the caps from “pilot” to #7 correctly, found the cap #15 to be closest to cap #7 in colour and then sorted the rest of the caps correctly.

Note that the crossing from cap #7 to cap #15 is accepted as normal because of the relatively large difference between caps #7 and #8. Figure 6 shows normal findings. The person has sorted the caps from “pilot” to #7 correctly, found the cap #15 to be closest to cap #7 in colour and then sorted the rest of the caps correctly.
Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

A person who makes several major errors that give rise to lines crossing of colour mixed with white) or the size of the test is varied.

Acquired colour vision defect tested with different sorting tests

Acquired patchy defects of central visual field cause varying losses of colour vision in different parts of the central visual field and result in different kinds of confusions, when either the saturation (the amount of colour mixed with white) or the size of the test is varied.

By arranging the whole circle at once in this play situation, colour confusions are found as short sequences of the circle. By varying the thirds of the caps on the table, the axis confusions can be easily found. When tested with the large stimulus, the degree of the defect may be different from the results of testing with a small stimulus.

Testing can also be made easier by using the following technique: Show the person that ‘I would arrange these colours in this order’ and place the caps one after the other in the correct order. Then say ‘this was my way of arranging, lets sort the caps together’. Place the Pilot cap at the left edge of the test area and say ‘this is always the first cap’. Then take it and move it above the other caps that are mixed on the table and ask ‘which one of these has nearly the same colour?’ When the child chooses one - correct or incorrect - place the Pilot on its place and use the chosen cap the same way as the Pilot cap at the left edge of the test area. Go on like this until all caps are sorted. If one or two caps are left over, tell the child ‘these we forgot to sort, where would you place them?’. When the child/person does not need to concentrate on the motor functions, sorting the colours becomes easier.

Interpretation of Panel 16 Test Results

Minor Confusions

Errors between caps close to each other are common, even in persons with normal trichromatic colour vision. Figure 18 shows an example of two minor confusions; #5, #6, #11 and #12 were misplaced.

Crossings Across Colour Circle

Confusions between colours farther apart from each other on the colour circle (i.e., across the colour circle) also occur in normal colour vision, especially from cap #7 to #15 (Refer to Figure 6). Less than four (4) crossings are usually accepted as normal if there is no definitive axis. Confusions occurring regularly in a certain direction across the colour space or axis (Figure 19; 3-34, 13-4, 5-12, 6-11) reveal the type of colour vision defect (Figure 19; deutan defect). Note that cap #15 was ‘left over,’ the patient wanted to place it on the wrong side of the ‘pilot.’ In a situation like this, it is best to accept the result as it is, mix the caps and repeat. More than four (4) crossings in an axis are recorded as deficient colour perception in that axis.

The border between mild and moderate colour defects is not well defined.

Figure 15

Deutan Defect

Figure 4

A. The caps are arranged so that ‘closely similar’ caps are next to each other (Figure 4).

B. Results drawn on the recording sheet show crossings in the deutan axis (Figure 5).

In sorting tests, the color defective person arranges the caps in an order different from that of a person with normal color vision. Colors that look similar to the person with a color defect are placed next to each other.

In clinical evaluation of adult subjects the size of the stimulus should be 15° of angle. This means a working distance of 50 cm (19.5 in) with most tests. If the subject bends closer, the stimulus area increases. Standard evaluation is done with the small stimulus size. Subjects with mild color vision defects may discriminate and sort colors normally when large stimuli are used. For functional purposes, it is of interest to test with large size caps as well. When testing children, it is helpful to start with the large stimuli and proceed testing with small cap sizes.

Figure 5

Results in quantitative testing vary as a function of the stimulus size. This is more pronounced in acquired color vision defects than in congenital color vision defects. Results from testing with small stimuli depict function in the preferred retinal locus used for fixation, whereas results from testing with large stimuli give information on color perception in everyday life.

Color of an adjacent surface may alter the perceived brightness and hue of nearby color surfaces. This causes an additional confusing factor in assessing vision for ADL (Activities of Daily Living).

In diagnostic evaluation the tester should be aware of the fact that reduced retinal illumination due to cloudiness of the cornea, less than vitreous distort test results. In such cases, increased illumination
Color vision defects are X-chromosomally inherited, thus more common in males (8%) than in females (0.4%).

A normally sighted person sees all colors of the spectrum (Figure 2) whereas a person with a red-green defect (Figure 3) has a grayish confusion area (In brackets in Figure 3) within which he or she does not see the difference between some shades of red and green and mistakes them.

A. Colored surfaces in this figure represent all spectral colors, saturated at the outer end of the spokes.

B. This illustration depicts how the picture in Figure 2 is seen by a person with a deutan defect. Green tones and the opponent tones of purple-red are seen as dull and therefore easily confused with each other. Since these colors are on the opposite sides of the color circle, there is an "axis" of deficiency across the color circle. The color space of this person is blue-yellow with confusion of colors in the red-green axis. Individual variations in confusions of hue are great.

Color vision defects are generally screened using pseudoisochromatic Ishihara-type tests. They are designed to be highly sensitive and usually miss only a few mild cases. Some individuals who do not have a color vision defect may fail color vision screening tests. Therefore, the degree of color vision deficiency should be evaluated using quantitative tests. Statements or diagnosis of color deficiency are sometimes called red-blindness, green-blindness and blue-blindness, but these names are confusing. Persons with colour vision deficiencies are not colour blind, they just confuse some colours.

When recording the results as matched pairs, write them down as example: P = 1 15 15 12 13 11 10 9 8 7 6 5 4

In this case, there is only a mild uncertainty in the arrangement of the colours, no stable axis and less than four crossings.

When recording the results as matched pairs, write them down as in Figure 11. The crossings can be marked on the diagram on the Recording Form as in Figure 12.
Color Vision Testing

Lea Color Vision Test

To The Tester

Quantitative measurement of color vision is an important diagnostic test used to define the degree of hereditary color vision defects found in screening with pseudoisochromatic tests and in evaluating deficient color vision from acquired disorders.

The Panel 16 Quantitative Color Vision Test is unique from other quantitative color vision tests because it uses large cap sizes, which gives more information about color vision function both in normally sighted and low vision individuals.

The Panel 16 Color Vision Test consists of a set of a "pilot" or "pilots" and 15 test caps of the same hues as in the Farnsworth Panel D-15 Test. The diameter of the stimulus area is 5.3 cm (1.5 in).

The stimulus size can be reduced by using a dark gray restriction ring with an opening of 1.2 cm (.47 in) in diameter. The large stimulus area corresponds to the visual angle of 3.8° when testing at 50 cm (20 in) and to 6.3° when testing at 30 cm (12 in). The small stimulus is seen as the recommended 1.5° stimulus at a distance of 46 cm (18 in). When testing young children or persons with low vision, the distance is often much shorter than 30 cm, thus the size of the large stimulus becomes 9.5° at 20 cm (8 in) and 19° at 10 cm (4 in).

The color surface has a protective coating, which decreases the risk of the stimulus area getting smudged.

Color Vision

Neural Functions in Color Vision

Perception of color is based on three different neural functions:

1. Absorption of light energy in three types of cone cells of the retina;
2. Comparison of the absorption rates in these three different cones; and
3. Abstraction of color by cerebral cortex from this comparison.

Absorption curves of the three cone populations (Figure 1) show that each cell absorbs light energy within a wide range of the color spectrum. Neural impulses coming from all three types of cones selectively activate the cells of the ganglion cell layer from where the impulses are transferred via optic nerves and optic radiations to the primary visual cortex, from there the information moves to color specific areas for further analysis.

The three types of cone cells are the L-(long wave-length sensitive or “red”) cones, the M-(middle wave-length sensitive or “green”) cones, and the S-(short wave-length sensitive or “blue”) cones. The L- and M-cones constitute the majority of cones, 85 to 90 percent. The distribution of cones varies in different locations of the retina. S-cones

Figure 1